DOI: 10.3390/app13158759 ISSN: 2076-3417

An Improved YOLOv5s-Based Helmet Recognition Method for Electric Bikes

Bingqiang Huang, Shanbao Wu, Xinjian Xiang, Zhengshun Fei, Shaohua Tian, Haibin Hu, Yunlong Weng
  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

This paper proposes an improved model based on YOLOv5s, specifically designed to overcome the challenges faced by current target detection algorithms in the field of electric bike helmet detection. In order to enhance the model’s ability to detect small targets and densely populated scenes, a specialized layer dedicated to small target detection and a novel loss function called Normalized Wasserstein Distance (NWD) are introduced. In order to solve the problem of increasing model parameters and complexity due to the inclusion of a small target detection layer, a Cross-Stage Partial Channel Mixing (CSPCM) on top of Convmix is designed. The collaborative fusion of CSPCM and the Deep Feature Consistency (DFC) attention mechanism makes it more suitable for hardware devices. In addition, the conventional Nearest Upsample technology is replaced with the advanced CARAFE Upsample module, further improving the accuracy of the model. Through rigorous experiments on carefully constructed datasets, the results show significant improvements in various evaluation indicators such as precision, recall, mAP.5, and mAP.95. Compared with the unmodified YOLOv5s algorithm, the proposed enhanced model achieves significant improvements of 1.1%, 8.4%, 5.2%, and 8.6% on these indicators, respectively, and these enhancements are accompanied by a reduction of 778,924 parameters. The experimental results on our constructed dataset demonstrate the superiority of the improved model and elucidate its potential applications. Furthermore, promising improvements for future research are suggested. This study introduces an efficient approach for improving the detection of electric bike helmets and verifies the effectiveness and practicality of the model through experiments. Importantly, the proposed scheme has implications for other target detection algorithms, especially in the field of small target detection.

More from our Archive