An Energy Efficient Evolutionary Approach for Smart City-Based IoT Applications
Rashmi Prava Das, Tushar Kanta Samal, Ashish Kr. Luhach- General Engineering
- General Mathematics
Internet of Things (IoT) has been used in smart cities, agriculture, weather forecasting, smart grids, and waste management. The IoT has huge potential but needs refinement. The paper focuses on lowering IoT sensor power consumption to improve network life. This work selects the best IoT cluster header (CH) to maximize energy consumption. The suggested technique uses particle swarm optimization (PSO) with artificial neural networks (ANNs). The optimal CH in an IoT network cluster was identified by taking into account the number of active nodes, the load, the residual energy, and the cost function. This work compares the suggested method with artificial bee colony, genetic, and adaptive gravity search algorithms. The hybrid solution beats conventional methods.