Mian Zhao, Xiangyang Xu, Xiaohua Bao, Xiangsheng Chen, Hao Yang

An Automated Instance Segmentation Method for Crack Detection Integrated with CrackMover Data Augmentation

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

Crack detection plays a critical role in ensuring road safety and maintenance. Traditional, manual, and semi-automatic detection methods have proven inefficient. Nowadays, the emergence of deep learning techniques has opened up new possibilities for automatic crack detection. However, there are few methods with both localization and segmentation abilities, and most perform poorly. The consistent nature of pavement over a small mileage range gives us the opportunity to make improvements. A novel data-augmentation strategy called CrackMover, specifically tailored for crack detection methods, is proposed. Experiments demonstrate the effectiveness of CrackMover for various methods. Moreover, this paper presents a new instance segmentation method for crack detection. It adopts a redesigned backbone network and incorporates a cascade structure for the region-based convolutional network (R-CNN) part. The experimental evaluation showcases significant performance improvements achieved by these approaches in crack detection. The proposed method achieves an average precision of 33.3%, surpassing Mask R-CNN with a Residual Network 50 backbone by 8.6%, proving its effectiveness in detecting crack distress.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive