Yangguang Xu, Ge Guo, Shuanghe Yu

An adaptive dynamic programming method for observer‐based sliding mode control of connected vehicles subject to deception attacks

  • Electrical and Electronic Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering
  • Aerospace Engineering
  • Biomedical Engineering
  • General Chemical Engineering
  • Control and Systems Engineering

AbstractThis article investigates the problem of optimal observer‐based sliding mode control (SMC) of connected vehicles subject to deception attacks and disturbances with adaptive dynamic programming (ADP) method. For a group of vehicles with unknown nonlinear dynamics term and disturbance, this article aims to give a control methodology to achieve secure tracking of the desired spacing, velocity and acceleration. A neural network (NN) and an observer are constructed to estimate the unknown nonlinear term and the states, respectively. Then, a SMC scheme incorporating NN approximation is developed and an off‐policy ADP method is used to implement the optimal control of sliding mode dynamics. The proposed method can ensure individual stability and string stability of the set of vehicles. Numerical simulations are conducted to demonstrate the validity of the proposed controller.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive