Yuan Li, Zhan Li, Xuebo Yang, Xinghu Yu

Adaptive model predictive control based on neural networks for Hover attitude tracking with input saturation and unknown disturbances

  • Instrumentation

The anti-disturbance control of quadrotor attitude tracking under saturation constraints is a difficult problem. In this paper, a neural network-based model predictive controller for quadrotor systems with input saturation and external disturbances is developed. The unmodeled dynamics and external disturbances of the system are simplified to the disturbance superimposed on the nominal system, and the gradient descent neural networks are used to complete the estimation and compensation of the disturbance. The adaptive model predictive controller is designed based on the nominal system. The disturbance value estimated by the neural network adaptively adjusts the control constraints in the model predictive controller. The robustness and anti-disturbance of the designed controller are analyzed. The experiments show that, compared to the robust model predictive control, the algorithm proposed in this paper reduces the steady-state mean errors of the yaw, pitch, and roll attitude channels of the Hover system. Specifically, the algorithm results in a decrease of 2.622%, 2.292%, and 1.192% without external disturbances and 2.056%, 4.17%, and 0.956% with outside disturbances. Experimental results confirm the effectiveness of the proposed method.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive