DOI: 10.3390/biom14030333 ISSN: 2218-273X

Activation of Cannabinoid Type 2 Receptor in Microglia Reduces Neuroinflammation through Inhibiting Aerobic Glycolysis to Relieve Hypertension

Ruohan Shan, Yuxiang Zhang, Yiping Shi, Xiaowen Wang, Xueke Wang, Guanying Ma, Qian Li
  • Molecular Biology
  • Biochemistry

Background: Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, the exact mechanism has not been clarified. The objective of this study is to demonstrate that activation of microglial CB2 receptors can effectively reduce the levels of TNF-α, IL-1β, and IL-6 in the paraventricular nucleus (PVN) through inhibiting aerobic glycolysis, thereby relieving hypertension. Methods: AngiotensinII (AngII) was administered to BV2 cells and C57 mice to induce hypertension and the release of proinflammatory cytokines. The mRNA and protein expression of the CB2 receptor, TNF-α, IL-1β, IL-6, and the PFK and LDHa enzymes were detected using RT-qPCR and Western blotting. The Seahorse XF Energy Metabolism Analyzer was used to measure the oxidative phosphorylation and aerobic glycolysis metabolic pathways in BV2 cells. The long-term effects of injecting JWH133, a selective CB2 receptor agonist, intraperitoneally on blood pressure were ascertained. ELISA was used to measure norepinephrine and lactic acid levels while immunofluorescence labeling was used to locate the CB2 receptor and c-Fos. By injecting pAAV-F4/80-GFP-mir30shRNA (AAV2-r-CB2shRNA) into the lateral cerebral ventricle, the CB2 receptor in microglia was specifically knocked down. Results: Activation of CB2 receptors by the agonist JWH133 suppressed TNF-α, IL-1β, and IL-6 by inhibiting PFK and LDHa enzymes involved in glycolysis, as well as lactic acid accumulation, along with a reduction in glycoPER levels (marks of aerobic glycolysis) in AngII-treated BV2 cells. In AngII-treated mice, the administration of JWH133 specifically activated CB2 receptors on microglia, resulting in decreased expression levels of PFK, LDHa, TNF-α, IL-1β, and IL-6, subsequently leading to a decrease in c-Fos protein expression within PVN neurons as well as reduced norepinephrine levels in plasma, ultimately contributing to blood pressure reduction. Conclusion: The results suggest that activation of the microglia CB2 receptor decreases the neuroinflammation to relieve hypertension; the underlying mechanism is related to inhibiting aerobic glycolysis of microglia.

More from our Archive