Dongdong Zhang, Pengyong Lu, Xiya He, Yali Gao

Abrasive Wear and Physical Properties of In-Situ Nano-TiCx Reinforced Cu–Cr–Zr Composites

  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

Cu–Cr–Zr alloys reinforced in situ with TiCx nanoparticles were prepared via combustion synthesis and electromagnetic stirring casting. The microstructure of TiCx/Cu-Cr-Zr composites with various contents was analyzed. The microhardness and Brinell hardness of the composites were determined; the average volumetric abrasive wear rate and worn surface of the composites were investigated; and the electrical, thermal conductivity and thermal expansion coefficients of the materials were discussed. The results indicated that the addition of TiCx particles transformed the Cu–Cr–Zr matrix alloy microstructure from a dendritic to an equiaxed crystal, and the grain size was significantly refined as the amount added was increased. The composites with high TiCx content possessed higher hardness and abrasive wear resistance. The addition of TiCx particles reduced the electrical and thermal conductivity and thermal expansion coefficients of the materials.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive