Ruiru Qin, Chuanzhi Wang, Yongmei Wu, Huafei Du, Mingyun Lv

A U-Shaped Convolution-Aided Transformer with Double Attention for Hyperspectral Image Classification

  • General Earth and Planetary Sciences

Convolutional neural networks (CNNs) and transformers have achieved great success in hyperspectral image (HSI) classification. However, CNNs are inefficient in establishing long-range dependencies, and transformers may overlook some local information. To overcome these limitations, we propose a U-shaped convolution-aided transformer (UCaT) that incorporates convolutions into a novel transformer architecture to aid classification. The group convolution is employed as parallel local descriptors to extract detailed features, and then the multi-head self-attention recalibrates these features in consistent groups, emphasizing informative features while maintaining the inherent spectral–spatial data structure. Specifically, three components are constructed using particular strategies. First, the spectral groupwise self-attention (spectral-GSA) component is developed for spectral attention, which selectively emphasizes diagnostic spectral features among neighboring bands and reduces the spectral dimension. Then, the spatial dual-scale convolution-aided self-attention (spatial-DCSA) encoder and spatial convolution-aided cross-attention (spatial-CCA) decoder form a U-shaped architecture for per-pixel classifications over HSI patches, where the encoder utilizes a dual-scale strategy to explore information in different scales and the decoder adopts the cross-attention for information fusion. Experimental results on three datasets demonstrate that the proposed UCaT outperforms the competitors. Additionally, a visual explanation of the UCaT is given, showing its ability to build global interactions and capture pixel-level dependencies.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive