DOI: 10.1029/2023gl106636 ISSN: 0094-8276

A Spatially Explicit Uncertainty Analysis of the Air‐Sea CO2 Flux From Observations

Annika Jersild, Peter Landschützer
  • General Earth and Planetary Sciences
  • Geophysics


In order to understand the oceans role as a global carbon sink, we must accurately quantify the amount of carbon exchanged at the air‐sea interface. A widely used machine learning neural network product, the SOM‐FFN, uses observations to reconstruct a monthly, 1° × 1° global CO2 flux estimate. However, uncertainties in neural network and interpolation techniques can be large, especially in seldom‐sampled regions. Here, we present a three‐dimensional (latitude, longitude, time) gridded product for our SOM‐FFN observational data set consisting of uncertainties (pCO2 mapping, transfer velocity, wind) and biases (pCO2 mapping). We find that polar regions are dominated by uncertainty from gas exchange transfer velocity, with an average 48.7% contribution. In contrast, for subtropical regions, wind product choice contributes an average 50.0%. Regions with fewer observations correlate with higher uncertainty and biases, illustrating the importance of maintaining and expanding existing measurements.

More from our Archive