Saleh M. Alshahry, Awwad H. Alshehry, Abdullah K. Alhazmi, Vamsy P. Chodavarapu

A Size, Weight, Power, and Cost-Efficient 32-Channel Time to Digital Converter Using a Novel Wave Union Method

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

We present a Tapped Delay Line (TDL)-based Time to Digital Converter (TDC) using Wave Union type A (WU-A) architecture for applications that require high-precision time interval measurements with low size, weight, power, and cost (SWaP-C) requirements. The proposed TDC is implemented on a low-cost Field-Programmable Gate Array (FPGA), Artix-7, from Xilinx. Compared to prior works, our high-precision multi-channel TDC has the lowest SWaP-C requirements. We demonstrate an average time precision of less than 3 ps and a Root Mean Square resolution of about 1.81 ps. We propose a novel Wave Union type A architecture where only the first multiplexer is used to generate the wave union pulse train at the arrival of the start signal to minimize the required computational processing. In addition, an auto-calibration algorithm is proposed to help improve the TDC performance by improving the TDC Differential Non-Linearity and Integral Non-Linearity.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive