Daniel Rodriguez-Guevara, Antonio Favela-Contreras, Oscar Julian Gonzalez-Villarreal

A qLPV-MPC Control Strategy for Trajectory Tracking of Quadrotors

  • Electrical and Electronic Engineering
  • Industrial and Manufacturing Engineering
  • Control and Optimization
  • Mechanical Engineering
  • Computer Science (miscellaneous)
  • Control and Systems Engineering

This article proposes a model predictive control (MPC) strategy for a quadrotor drone trajectory tracking based on a compact state-space model based on a quasi-linear parameter varying (qLPV) representation of the nonlinear quadrotor. The use of a qLPV representation allows for faster execution times, which can be suitable for real-time applications and for solving the optimization problem using quadratic programming (QP). The estimation of future values of the scheduling parameters along the prediction horizon is made by using the planned trajectory based on the previous optimal control actions. The performance of the proposed approach is tested by following different trajectories in simulation to show the effectiveness of the proposed control scheme.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive