A Novel Unsupervised Outlier Detection Algorithm Based on Mutual Information and Reduced Spectral Clustering
Yuehua Huang, Wenfen Liu, Song Li, Ying Guo, Wen Chen- Electrical and Electronic Engineering
- Computer Networks and Communications
- Hardware and Architecture
- Signal Processing
- Control and Systems Engineering
Outlier detection is an essential research field in data mining, especially in the areas of network security, credit card fraud detection, industrial flaw detection, etc. The existing outlier detection algorithms, which can be divided into supervised methods and unsupervised methods, suffer from the following problems: curse of dimensionality, lack of labeled data, and hyperparameter tuning. To address these issues, we present a novel unsupervised outlier detection algorithm based on mutual information and reduced spectral clustering, called MISC-OD (Mutual Information and reduced Spectral Clustering—Outlier Detection). MISC-OD first constructs a mutual information matrix between features, then, by applying reduced spectral clustering, divides the feature set into subsets, utilizing the LOF (Local Outlier Factor) for outlier detection within each subset and combining the outlier scores found within each subset. Finally, it outputs the outlier score. Our contributions are as follows: (1) we propose a novel outlier detection method called MISC-OD with high interpretability and scalability; (2) numerous experiments on 18 benchmark datasets demonstrate the superior performance of the MISC-OD algorithm compared with eight state-of-the-art baselines in terms of ROC (receiver operating characteristic) and AP (average precision).