DOI: 10.3390/cryst14030266 ISSN: 2073-4352

A Multiband and Multifunctional Metasurface for Linear and Circular Polarization Conversion in Reflection Modes

Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Wang Yun, Muhammad Ishfaq
  • Inorganic Chemistry
  • Condensed Matter Physics
  • General Materials Science
  • General Chemical Engineering

Multifunctional integrated meta-devices are the demand of modern communication systems and are given a lot of attention nowadays. Most of the research has focused on either cross-polarization conversion (CPC) or linear-to-circular (LP–CP) conversion. However, simultaneously realizing multiple bands with good conversion efficiency remains crucial. This paper proposes a multiband and multifunctional dual reflective polarization converter surface capable of converting a linearly polarized (LP) wave into a circularly polarized (CP) wave, in frequency bands of 12.29–12.63 GHz, 16.08–24.16 GHz, 27.82–32.21 GHz, 33.75–38.74 GHz, and 39.70–39.79 GHz, with 3 dB axial ratio bandwidths of 2.7%, 40.15%, 14.6%, 13.76%, and 0.2%, respectively. Moreover, the converter is capable of achieving CPC with a polarization conversion ratio (PCR) that exceeds 95%, within the frequency ranges of 13.10–14.72 GHz, 25.43–26.00, 32.46–32.56 GHz, and 39.14–39.59 GHz. In addition, to identify the fundamental cause of the CPC and LP–CP conversion, a comprehensive theoretical investigation is provided. Furthermore, the surface current distribution patterns at different frequencies are investigated to analyze the conversion phenomena. A sample prototype consisting of 20 × 20 unit cells was fabricated and measured, verifying our design and the simulated results. The proposed structure has potential applications in satellite communications, radar, stealth technologies, and reflector antennas.

More from our Archive