Dzianis Prakapenka, Zuoxiang Liang, Hafedh B. Zaabza, Paul M. VanRaden, Curtis P. Van Tassell, Yang Da

A Million-Cow Validation of a Chromosome 14 Region Interacting with All Chromosomes for Fat Percentage in U.S. Holstein Cows

  • Inorganic Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Computer Science Applications
  • Spectroscopy
  • Molecular Biology
  • General Medicine
  • Catalysis

A genome-wide association study (GWAS) of fat percentage (FPC) using 1,231,898 first lactation cows and 75,198 SNPs confirmed a previous result that a Chr14 region about 9.38 Mb in size (0.14–9.52 Mb) had significant inter-chromosome additive × additive (A×A) effects with all chromosomes and revealed many new such effects. This study divides this 9.38 Mb region into two sub-regions, Chr14a at 0.14–0.88 Mb (0.74 Mb in size) with 78% and Chr14b at 2.21–9.52 Mb (7.31 Mb in size) with 22% of the 2761 significant A×A effects. These two sub-regions were separated by a 1.3 Mb gap at 0.9–2.2 Mb without significant inter-chromosome A×A effects. The PPP1R16A-FOXH1-CYHR1-TONSL (PFCT) region of Chr14a (29 Kb in size) with four SNPs had the largest number of inter-chromosome A×A effects (1141 pairs) with all chromosomes, including the most significant inter-chromosome A×A effects. The SLC4A4-GC-NPFFR2 (SGN) region of Chr06, known to have highly significant additive effects for some production, fertility and health traits, specifically interacted with the PFCT region and a Chr14a region with CPSF1, ADCK5, SLC52A2, DGAT1, SMPD5 and PARP10 (CASDSP) known to have highly significant additive effects for milk production traits. The most significant effects were between an SNP in SGN and four SNPs in PFCT. The CASDSP region mostly interacted with the SGN region. In the Chr14b region, the 2.28–2.42 Mb region (138.46 Kb in size) lacking coding genes had the largest cluster of A×A effects, interacting with seventeen chromosomes. The results from this study provide high-confidence evidence towards the understanding of the genetic mechanism of FPC in Holstein cows.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive