Ruiheng Yang, Zhikun Chen, Bin’an Wang, Yunfei Guo, Lingtong Hu

A Lightweight Detection Method for Remote Sensing Images and Its Energy-Efficient Accelerator on Edge Devices

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

Convolutional neural networks (CNNs) have been extensively employed in remote sensing image detection and have exhibited impressive performance over the past few years. However, the abovementioned networks are generally limited by their complex structures, which make them difficult to deploy with power-sensitive and resource-constrained remote sensing edge devices. To tackle this problem, this study proposes a lightweight remote sensing detection network suitable for edge devices and an energy-efficient CNN accelerator based on field-programmable gate arrays (FPGAs). First, a series of network weight reduction and optimization methods are proposed to reduce the size of the network and the difficulty of hardware deployment. Second, a high-energy-efficiency CNN accelerator is developed. The accelerator employs a reconfigurable and efficient convolutional processing engine to perform CNN computations, and hardware optimization was performed for the proposed network structure. The experimental results obtained with the Xilinx ZYNQ Z7020 show that the network achieved higher accuracy with a smaller size, and the CNN accelerator for the proposed network exhibited a throughput of 29.53 GOPS and power consumption of only 2.98 W while consuming only 113 DSPs. In comparison with relevant work, DSP efficiency at an identical level of energy consumption was increased by 1.1–2.5 times, confirming the superiority of the proposed solution and its potential for deployment with remote sensing edge devices.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive