Tao Chen, Cyrus Shafai

A Flexible Printed Circuit Board-Based Microelectromechanical Field Mill with a Vertical Movement Shutter Driven by an Electrostatic Actuator

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

Micromachined electric field mills have received much interest for the measurement of DC fields; however, conventional designs with lateral moving shutters could have shutter lifting in the presence of strong fields, which affects their performance. This paper presents a MEMS electric field mill utilizing a vertical movement shutter to address this issue. The sensor is designed and fabricated based on a flexible PCB substrate and is released using a laser-cutting process. The movement of the shutter is driven by an electrostatic actuator. When the driving signal is a sine wave, the shutter moves in the same direction during both the positive and negative half-periods. This facilitates the application of a lock-in amplifier to synchronize with the signal at twice the frequency of the driving signal. In experimental testing, when the vertical shutter is driven at a resonance of 840 Hz, the highest sensitivity of the sensor is achieved and is measured to be 5.1 V/kVm−1. The sensor also demonstrates a good linearity of 1.1% for measuring DC electric fields in the range of 1.25 kV/m to 25 kV/m.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive