Qin Zhang, Weikai Chen, Guangfeng Li, Zhixin Ma, Mengru Zhu, Qianmin Gao, Ke Xu, Xinru Liu, Wenyi Lu, Wencai Zhang, Yan Wu, Zhongmin Shi, Jiacan Su

A Factor‐Free Hydrogel with ROS Scavenging and Responsive Degradation for Enhanced Diabetic Bone Healing

  • Biomaterials
  • Biotechnology
  • General Materials Science
  • General Chemistry

AbstractIn view of the increased levels of reactive oxygen species (ROS) that disturb the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), the repair of diabetic bone defects remains a great challenge. Herein, a factor‐free hydrogel is reported with ROS scavenging and responsive degradation properties for enhanced diabetic bone healing. These hydrogels contain ROS‐cleavable thioketal (TK) linkers and ultraviolet (UV)‐responsive norbornene (NB) groups conjugated with 8‐arm PEG macromers, which are formed via UV crosslinking‐mediated gelation. Upon reacting with high levels of ROS in the bone defect microenvironment, ROS‐cleavable TK linkers are destroyed, allowing the responsive degradation of hydrogels, which promotes the migration of BMSCs. Moreover, ROS levels are reduced through hydrogel‐mediated ROS scavenging to reverse BMSC differentiation from adipogenic to osteogenic phenotype. As such, a favorable microenvironment is created after simultaneous ROS scavenging and hydrogel degradation, leading to the effective repair of bone defects in diabetic mouse models, even without the addition of growth factors. Thus, this study presents a responsive hydrogel platform that regulates ROS scavenging and stromal degradation in bone engineering.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive