Wei Shen, Xiaofeng Chen, Yong Zhang, Xin Hu, Jian Wu, Lijun Liu, Chuanlu Deng, Chengyong Hu, Yi Huang

A Concise and Adaptive Sidelobe Suppression Algorithm Based on LMS Filter for Pulse-Compressed Signal of Φ-OTDR

  • Radiology, Nuclear Medicine and imaging
  • Instrumentation
  • Atomic and Molecular Physics, and Optics

A concise and adaptive sidelobe suppression algorithm based on a least mean square (LMS) filter is proposed for pulse-compressed signals of a phase-sensitive optical time-domain reflectometer (Φ-OTDR) system. The algorithm is suitable for the denoising filtering process of phase coding OTDR (PC-OTDR) systems and mitigates the sidelobe effect due to matched filtering. In a simulation experiment, Rayleigh backscattering (RBS) signals including phase-coded pulse signals are generated and decoded to verify that the LMS algorithm can eliminate the sidelobes more effectively than the windowing method and the recursive least squares (RLS) method. Then, the PC-OTDR system is set up and combined with the LMS algorithm for positioning experiments. The results show that the peak side lobe ratio (PSLR) of the signals can reach −15.86 dB, which is 4.26 dB lower than the raw pulse compressed signal.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive