Virtual Synchronous Generator Control of Grid Connected Modular Multilevel Converters with an Improved Capacitor Voltage Balancing Method
Haroun Bensiali, Farid Khoucha, Abdeldjabar Benrabah, Lakhdar Benhamimid, Mohamed BenbouzidModular multilevel converters have emerged as a common solution in high-voltage and medium-voltage applications due to their scalability and modularity. However, these advantages come at the cost of increased control complexity, particularly when compared to other multilevel converter topologies. This paper proposes a new combined control strategy based on virtual synchronous generator (VSG) control and capacitor voltage balancing (CVB) method. The VSG control is applied for power sharing and inertia emulation to increase the dynamic response and improve system stability while the CVB method is used to redistribute the energy stored in the capacitors of the submodules (SMs) in order to ensure uniform voltage levels and equalize the voltage across the capacitors. The simulation results as well as experimental ones confirm the feasibility and effectiveness of the proposed method, enhancing the performance of the energy conversion system.