Unifying Gradients to Improve Real-World Robustness for Deep Networks
Yingwen Wu, Sizhe Chen, Kun Fang, Xiaolin Huang- Artificial Intelligence
- Theoretical Computer Science
The wide application of deep neural networks (DNNs) demands an increasing amount of attention to their real-world robustness,
i.e.
, whether a DNN resists black-box adversarial attacks, among which score-based query attacks (SQAs) are most threatening since they can effectively hurt a victim network with the only access to model outputs. Defending against SQAs requires a slight but artful variation of outputs due to the service purpose for users, who share the same output information with SQAs. In this paper, we propose a real-world defense by Unifying Gradients (UniG) of different data so that SQAs could only probe a much weaker attack direction that is similar for different samples. Since such universal attack perturbations have been validated as less aggressive than the input-specific perturbations, UniG protects real-world DNNs by indicating attackers a twisted and less informative attack direction. We implement UniG efficiently by a Hadamard product module which is plug-and-play. According to extensive experiments on 5 SQAs, 2 adaptive attacks and 7 defense baselines, UniG significantly improves real-world robustness without hurting clean accuracy on CIFAR10 and ImageNet. For instance, UniG maintains a model of