Targeting Oncogenic Mutant p53 and BCL-2 for Small Cell Lung Cancer Treatment
Victoria Neely, Alekhya Manchikalapudi, Khanh Nguyen, Krista Dalton, Bin Hu, Jennifer E. Koblinski, Anthony C. Faber, Sumitra Deb, Hisashi Harada- Inorganic Chemistry
- Organic Chemistry
- Physical and Theoretical Chemistry
- Computer Science Applications
- Spectroscopy
- Molecular Biology
- General Medicine
- Catalysis
Through a unique genomics and drug screening platform with ~800 solid tumor cell lines, we have found a subset of SCLC cell lines are hypersensitive to venetoclax, an FDA-approved inhibitor of BCL-2. SCLC-A (ASCL1 positive) and SCLC-P (POU2F3 positive), which make up almost 80% of SCLC, frequently express high levels of BCL-2. We found that a subset of SCLC-A and SCLC-P showed high BCL-2 expression but were venetoclax-resistant. In addition, most of these SCLC cell lines have TP53 missense mutations, which make a single amino acid change. These mutants not only lose wild-type (WT) p53 tumor suppressor functions, but also acquire novel cancer-promoting activities (oncogenic, gain-of-function). A recent study with oncogenic mutant (Onc)-p53 knock-in mouse models of SCLC suggests gain-of-function activity can attenuate chemotherapeutic efficacy. Based on these observations, we hypothesize that Onc-p53 confers venetoclax resistance and that simultaneous inhibition of BCL-2 and Onc-p53 induces synergistic anticancer activity in a subset of SCLC-A and SCLC-P. We show here that (1) down-regulation of Onc-p53 increases the expression of a BH3-only pro-apoptotic BIM and sensitizes to venetoclax in SCLC-P cells; (2) targeting Onc-p53 by the HSP90 inhibitor, ganetespib, increases BIM expression and sensitizes to venetoclax in SCLC-P and SCLC-A cells. Although there are currently many combination studies for venetoclax proposed, the concept of simultaneous targeting of BCL-2 and Onc-p53 by the combination of venetoclax and HSP90 inhibitors would be a promising approach for SCLC treatment.