Tailoring the Architecture of Molecular Bottlebrushes via Click Grafting‐Onto Strategy
Yi Shi, Wangmeng Hou, Zheqi Li, Yongming Chen- Materials Chemistry
- Polymers and Plastics
- Organic Chemistry
Abstract
Molecular bottlebrush (MBB) refer to a synthetic macromolecule, in which a mass of polymeric side chains (SCs) are covalently connected to a macromolecular backbone densely, representing an important type of unimolecular nanomaterial. The chemical composition, size, shape, and surface property of MBB can be precisely tailored by varying the backbones and SCs as well as the grafting density (Gdst). Meanwhile, the topological structure of backbones and SCs can also significantly affect the chemical and physical properties of MBBs. For the past few years, by combining the structure features of MBB, the polymers with diverse architectures using MBB as building block are synthesized, including linear, branched, and cyclic MBB etc. These promising architectural features will bring MBBs with diverse architectures and lots of applications in advanced materials. For this reason, this work is interested in giving a briefly summary of the recent progress on tailor of well‐defined MBBs with diverse architectures using grafting‐onto strategy combined with controlled polymerization technique.