DOI: 10.3390/su151712866 ISSN:

Sustainable Last-Mile Delivery Solution Evaluation in the Context of a Developing Country: A Novel OPA–Fuzzy MARCOS Approach

Chia-Nan Wang, Yu-Chi Chung, Fajar Dwi Wibowo, Thanh-Tuan Dang, Ngoc-Ai-Thy Nguyen
  • Management, Monitoring, Policy and Law
  • Renewable Energy, Sustainability and the Environment
  • Geography, Planning and Development
  • Building and Construction

With the surge in e-commerce volumes during COVID-19, improving last-mile logistics is extremely challenging, specifically for developing economies, due to poor infrastructures, lack of stakeholders’ cooperation, and untapped resources. In the context of Vietnam, there are certain solutions that can bring more efficient and sustainable last-mile logistics. In this paper, to evaluate and rank these potentially sustainable last-mile solutions (LMSs), we propose a novel hybrid multiple attribute decision-making (MADM) model that combines the Ordinal Priority Approach (OPA) and fuzzy Measurement of Alternatives and Ranking according to the COmpromise Solution (fuzzy MARCOS). Twelve sustainability factors of technical, economic, social, and environmental aspects were determined through a literature review and experts’ opinions to employ the MADM approach. A case study evaluating five LMSs in Vietnam concerning their sustainable implementation is solved to exhibit the proposed framework’s applicability. From the OPA findings, “efficiency”, “costs of implementation and control”, “voice of customer”, “reliability”, and “flexibility” are the topmost criteria when considering a new LMS implementation in the context of Vietnam. Moreover, sensitivity analysis and comparative analysis were performed to test the robustness of the approach. The results illustrate that the applied methods reach consistent solution rankings, where LMS-03 (convenience store pickup), LMS-02 (parcel lockers), and LMS-01 (green vehicles) are the best solutions in Vietnam. The study holds novelty in evaluating last-mile initiatives for Vietnam by utilizing a unique approach in the form of two novel MADM techniques, thus providing significant insights for research and applications.

More from our Archive