DOI: 10.3390/coatings13091507 ISSN:

Study on Discharge Characteristics and Microstructural Evolution of PEO Coatings Based on an Al/Ti Tracer Substrate

Guodong Li, Guang Li, Yuan Xia
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

In this study, samples underwent plasma electrolytic oxidation (PEO) treatment using Al/Ti tracer substrates for 5, 10, 20, 35, and 55 min. The ionization states were determined using Optical Emission Spectroscopy (OES). Microstructural and elemental analyses were conducted using scanning electron microscopy equipped with energy dispersive spectrometry (SEM-EDS). The structural organization and phase composition of the coatings were characterized using X-ray diffraction (XRD) and Raman spectroscopy, respectively. The research findings indicate that the early discharge stage is dominated by discharge within the pre-deposited Al layer, which undergoes gradual oxidation along the thickness direction, while Ti (0.25 wt%) is found on the coating surface. The power increase was 56% of the total increase from min 5 to min 10 of discharge. As discharge time increased, the spectral peaks corresponding to Ti gradually became stronger and were accompanied by gradual enhancement of the crystallinity of the anatase and rutile phases within the coating. The coating surface displayed closed and semi-closed pores in the middle of the discharge. After 55 min of discharge, amorphous SiO2 was observed and Ti content on the coating surface increased to 4.59 wt%.

More from our Archive