DOI: 10.3390/cryst13081289 ISSN:

Study of Microstructure, Crystallographic Phases and Setting Time Evolution over Time of Portland Cement, Coarse Silica Fume, and Limestone (PC-SF-LS) Ternary Portland Cements

Esperanza Menéndez, Miguel Ángel Sanjuán, Hairon Recino
  • Inorganic Chemistry
  • Condensed Matter Physics
  • General Materials Science
  • General Chemical Engineering

The use of silica fume as a partial replacement for Ordinary Portland Cement provides a wide variety of benefits, such as reduced pressure on natural resources, reduced CO2 footprint, and improved mechanical and durability properties. The formation of more stable crystallographic phases in the hardened cement paste can promote resistance to concrete attacks. However, using coarse silica fume may result in lower expenses and shorter workdays. In this work, coarse silica fume was used as a partial replacement of cement, by weight, at 3%, 5%, and 7%, and it was used as limestone filler at different particle sizes. The size of coarse silica fume used was 238 μm. The microstructural, compositional analysis, and crystalline phase content of mixed cements at different ages were evaluated. The addition of coarse silica fume and limestone promoted pore refinement of the composites and increased the calcium and silica content. The filling effect of fine limestone and coarse silica fume particles, as well as the formation of CSH gel, was found to be the main reason for the densified microstructure. The contributions of combined coarse silica fume and limestone improve the stability of CSH gels and pozzolanic reaction.

More from our Archive