DOI: 10.1177/23977914231195757 ISSN:

Structure and thermal behaviour of different concentration PEG loaded PVA nanofibers

Archana Nigrawal, Navin Chand, Arun Kumar Sharma, Fozia Z Haque
  • Electrical and Electronic Engineering
  • Condensed Matter Physics
  • General Materials Science

Poly vinyl alcohol (PVA) has established its credibility in the fields of filtration, biomedical and pharmaceutical areas. In this paper different concentration of poly (ethylene) glycol were added to PVA to prepare gel and its nano fibres. PEG is water soluble similar to PVA can give a uniform gel and a strong intermolecular bonding can be achieved by the addition of PEG in PVA. Fibres were prepared by having high wt.% of PEG loaded PVA nano fibres. Nano fibre mat having 0, 0.2,0.4 and 0.6 g PEG having low molecular weight was added in the 8.6 wt.% PVA solution and then fibres were prepared by using electro spinning technique. Nano fibres so prepared were characterised by SEM, XRD and DSC. SEM results reveal that increase of PEG concentration separated the nano fibres and increased the gap of the mesh size. SEM micro graphs depicts that produced nano fibres are homogenous in nature and there were no apparent gap between the PVA and PEG nano fibre. It may be explained that due to the high electric potential developed during the electro spinning process which helped the nano fibres to get stretched XRD patterns exhibited the crystal size increased on adding PEG in the PVA gel. Effect of PEG addition on Tm of PVA nano fibres has been determined by running their DSC scans. An additional peak of 158.13°C is observed for the sample having 0.4 g PEG. Melting temperature shifted from 215° C to 219°C due to increase in crystal size of PEG added PVA nano fibres.

More from our Archive