DOI: 10.1093/mnras/stad2610 ISSN:

Steady states of the Parker instability

Devika Tharakkal, Anvar Shukurov, Frederick A Gent, Graeme R Sarson, Andrew P Snodin, Luiz Felippe S Rodrigues
  • Space and Planetary Science
  • Astronomy and Astrophysics


We study the linear properties, nonlinear saturation and a steady, strongly nonlinear state of the Parker instability in galaxies. We consider magnetic buoyancy and its consequences with and without cosmic rays. Cosmic rays are described using the fluid approximation with anisotropic, non-Fickian diffusion. To avoid unphysical constraints on the instability (such as boundary conditions often used to specify an unstable background state), nonideal MHD equations are solved for deviations from a background state representing an unstable magnetohydrostatic equilibrium. We consider isothermal gas and neglect rotation. The linear evolution of the instability is in broad agreement with earlier analytical and numerical models; but we show that most of the simplifying assumptions of the earlier work do not hold, such that they provide only a qualitative rather than quantitative picture. In its nonlinear stage the instability has significantly altered the background state from its initial state. Vertical distributions of both magnetic field and cosmic rays are much wider, the gas layer is thinner, and the energy densities of both magnetic field and cosmic rays are much reduced. The spatial structure of the nonlinear state differs from that of any linear modes. A transient gas outflow is driven by the weakly nonlinear instability as it approaches saturation.

More from our Archive