Ayaz Ul Haq, Said Muhammad, Cem Tokatli

Spatial distribution of the contamination and risk assessment of potentially harmful elements in the Ghizer River Basin, northern Pakistan

  • Management, Monitoring, Policy and Law
  • Atmospheric Science
  • Water Science and Technology
  • Global and Planetary Change

Abstract The Ghizer River Basin (GRB) is one of the sub-basins of the Indus River hosting rich mineralization and agrogenic activities. The GRB was sampled for 55 water samples and investigated for potentially harmful element (PHE) concentrations using inductively coupled plasma mass spectrometry. PHE concentrations in water of the GRB were used to calculate the potential of non-cancer risks such as chronic daily intake (CDI), hazard quotient (HQ), and cancer risk (CR). The highest average concentrations of chromium (37.1 ± 17.1 μg/L), copper (27.4 ± 12.5 μg/L), arsenic (4.8 ± 0.9 μg/L), cobalt (9.2 ± 3.3 μg/L), and nickel (62.7 ± 27.6 μg/L) were noted for the Ishkomen River segment of the GRB. Similarly manganese (417 ± 144 μg/L), cadmium (1.95 ± 0.02 μg/L), lead (7.7 ± 1.4 μg/L), and zinc (28.4 ± 5.5 μg/L) concentrations were maximum at downstream of the GRB. Geospatial and statistical analyses showed that lithogenic sources contributed higher to PHE contamination in the water of the GRB than the agrogenic sources. PHE concentrations were noted under the World Health Organization (WHO) drinking water thresholds, except for nickel. Results showed the uppermost CDI value of 13.6 μg/kg-day for manganese and HQ value of 0.52 for arsenic via water intake of children. Non-cancer and CR values through water intake were under the US Environmental Protection Agency (USEPA) thresholds and noted as suitable for drinking and other domestic purposes.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive