DOI: 10.1002/adma.202306923 ISSN:

Reversed Electron Transfer in Dual Single Atom Catalyst for Boosted Photoreduction of CO2

Yanzhao Zhang, Bernt Johannessen, Peng Zhang, Jinlong Gong, Jingrun Ran, Shi‐Zhang Qiao
  • Mechanical Engineering
  • Mechanics of Materials
  • General Materials Science


Photogenerated charge localization on material surfaces significantly affects photocatalytic performance, especially for multi‐electron CO2 reduction. Dual single atom (DSA) catalysts with flexibly designed reactive sites have received significant research attention for CO2 photoreduction. However, the charge transfer mechanism in DSA catalysts remains poorly understood. Here we report for the first time a reversed electron transfer mechanism on Au and Co DSA catalysts. In situ characterizations confirm that for CdS nanoparticles (NPs) loaded with Co or Au single atoms, photogenerated eletrons are localized around the single atom of Co or Au. In DSA catalysts however electrons are delocalized from Au and accumulate around Co atoms. Importantly, combined advanced spectroscopic findings and theoretical computation evidence that this reversed electron transfer in Au/Co DSA boosts charge redistribution and activation of CO2 molecules, leading to highly significantly increased photocatalytic CO2 reduction, for example, Au/Co DSA loaded CdS exhibits, respectively, ca. 2800% and 700% greater yields for CO and CH4 compared with that for CdS alone. Reversed electron transfer in DSA can be used for practical design for charge redistribution and to boost photoreduction of CO2. Findings will be of benefit to researchers and manufacturers in DSA loaded catalysts for generation of solar fuels.

This article is protected by copyright. All rights reserved

More from our Archive