Yiqiang Zhang, Jiaxing Che, Yijun Hu, Jiankuo Cui, Junhong Cui

Real-Time Ocean Current Compensation for AUV Trajectory Tracking Control Using a Meta-Learning and Self-Adaptation Hybrid Approach

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

Autonomous underwater vehicles (AUVs) may deviate from their predetermined trajectory in underwater currents due to the complex effects of hydrodynamics on their maneuverability. Model-based control methods are commonly employed to address this problem, but they suffer from issues related to the time-variability of parameters and the inaccuracy of mathematical models. To improve these, a meta-learning and self-adaptation hybrid approach is proposed in this paper to enable an underwater robot to adapt to ocean currents. Instead of using a traditional complex mathematical model, a deep neural network (DNN) serving as the basis function is trained to learn a high-order hydrodynamic model offline; then, a set of linear coefficients is adjusted dynamically by an adaptive law online. By conjoining these two strategies for real-time thrust compensation, the proposed method leverages the potent representational capacity of DNN along with the rapid response of adaptive control. This combination achieves a significant enhancement in tracking performance compared to alternative controllers, as observed in simulations. These findings substantiate that the AUV can adeptly adapt to new speeds of ocean currents.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive