Platelet-Rich Plasma (PRP) Mitigates Silver Nanoparticle (AgNP)-Induced Pulmonary Fibrosis via iNOS/CD68/CASP3/TWIST1 Regulation: An Experimental Study and Bioinformatics Analysis
Shaimaa R. Abdelmohsen, Ranya M. Abdelgalil, Asmaa M. Elmaghraby, Amira M. Negm, Reham Hammad, Eleni K. Efthimiadou, Sara Seriah, Hekmat M. El Magdoub, Hemat Elariny, Islam Farrag, Nahla El Shenawy, Doaa Abdelrahaman, Hussain Almalki, Ahmed A. Askar, Marwa M. El-Mosely, Fatma El Zahraa Abd El Hakam, Nadia M. HamdyPlatelet-rich plasma (PRP) has become an increasingly valuable biologic approach for personalized regenerative medicine because of its potent anti-inflammatory/healing effects. It is thought to be an excellent source of growth factors that can promote tissue healing and lessen fibrosis. Although this treatment has demonstrated effectiveness in numerous disease areas, its impact on pulmonary fibrosis (PF) caused by silver nanoparticles (AgNPs) via its antiapoptotic effects remains to be explored. AgNPs were synthesized biologically by Bacillus megaterium ATCC 55000. AgNP characterization was carried out via UV–Vis spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) imaging to reveal monodispersed spheres with a mean diameter of 45.17 nm. A total of 48 male Wistar rats divided into six groups, with 8 rats per group, were used in the current study on the basis of sample size and power. The groups used were the PRP donor, control, AgNP, AgNP + PRP, AgNP + dexamethasone (Dexa) rat groups, and a recovery group. Body weights, hydroxyproline (HP) levels, and CASP3 and TWIST1 gene expression levels were assessed. H&E and Sirius Red staining were performed. Immunohistochemical studies for inducible nitric oxide synthase (iNOS) and cluster of differentiation 68 (CD68) with histomorphometry were conducted. A significant reduction in body weight (BWt) was noted in the AgNP group compared with the AgNP + PRP group (p < 0.001). HP, CASP3, and TWIST1 expression levels were significantly increased by AgNPs but decreased upon PRP (p < 0.001) treatment. Compared with those in the control group, the adverse effects of AgNPs included PF, lung alveolar collapse, thickening of the interalveolar septa, widespread lymphocytic infiltration, increased alveolar macrophage CD68 expression, and iNOS positivity in the cells lining the alveoli. This work revealed that PRP treatment markedly improved the histopathological and immunohistochemical findings observed in the AgNP group in a manner comparable to that of the Dexa. In conclusion, these results demonstrated the therapeutic potential of PRP in a PF rat model induced via AgNPs. This study revealed that PRP treatment significantly improved the histopathological and immunohistochemical alterations observed in the AgNP-induced group, with effects comparable to those of the Dexa. In conclusion, these findings highlight the therapeutic potential of PRP in a rat model of AgNP-induced PF.