Off-Cloud Anchor Sharing Framework for Multi-User and Multi-Platform Mixed Reality Applications
Aida Vidal-Balea, Oscar Blanco-Novoa, Paula Fraga-Lamas, Tiago M. Fernández-CaramésThis article presents a novel off-cloud anchor sharing framework designed to enable seamless device interoperability for Mixed Reality (MR) multi-user and multi-platform applications. The proposed framework enables local storage and synchronization of spatial anchors, offering a robust and autonomous alternative for real-time collaborative experiences. Such anchors are digital reference points tied to specific positions in the physical world that allow virtual content in MR applications to remain accurately aligned to the real environment, thus being an essential tool for building collaborative MR experiences. This anchor synchronization system takes advantage of the use of local anchor storage to optimize the sharing process and to exchange the anchors only when necessary. The framework integrates Unity, Mirror and Mixed Reality Toolkit (MRTK) to support seamless interoperability between Microsoft HoloLens 2 devices and desktop computers, with the addition of external IoT interaction. As a proof of concept, a collaborative multiplayer game was developed to illustrate the multi-platform and anchor sharing capabilities of the proposed system. The experiments were performed in Local Area Network (LAN) and Wide Area Network (WAN) environments, and they highlight the importance of efficient anchor management in large-scale MR environments and demonstrate the effectiveness of the system in handling anchor transmission across varying levels of spatial complexity. Specifically, the obtained results show that the developed framework is able to obtain anchor transmission times that start around 12.7 s for the tested LAN/WAN networks and for small anchor setups, and to roughly 86.02–87.18 s for complex physical scenarios where room-sized anchors are required.