Numerical study on oxy-biomass co-firing in a cement rotary kiln
Yixiang Shu, Hanlin Zhang, Jiaye Zhang, Wei Xu, Yanlong Cheng, Su Zhang, Hrvoje Mikulcic, Yuhan Liao, Zhaochen Shi, Yang Guo, Xuebin WangCement manufacturing is among the industries with the highest energy consumption and pollution emissions. Combining oxy-fuel combustion with the technology of co-firing biomass with coal is a promising way to reduce pollutant and carbon emissions. Based on a 6000 t per day cement rotary kiln, the performance of oxy-biomass co-firing technology is investigated by CFD modeling. Cases under different biomass ratios (0%-30%) and O2 concentrations are simulated. Combustion characteristics including temperature field, wall heat flux distribution, NOx emissions, etc. are widely assessed. It is found that biomass co-firing can significantly reduce ignition delay caused by high CO2 concentration during oxy-fuel combustion. A flame distribution similar to the conventional air-fired condition is obtained under conditions of 33% O2 concentration and 10% biomass co-firing ratio. The wall heat transfer is enhanced in oxy-fuel cases. With the increase of biomass co-firing ratio, the wall heat flux tends to be more uniform. Oxy-fuel combustion can effectively reduce NOx emissions and the fuel-N conversion ratio. Biomass co-firing under oxy-fuel conditions can reduce the fuel-N conversion ratio from 10.9% to 8%, but it will lead to a slight increase in NOx emissions from 848 ppm to 899 ppm. It is necessary to control the co-firing amount of biomass to achieve effective combustion and pollutant emission control.