Christine Dewi, Rung-Ching Chen, Henoch Juli Christanto, Francesco Cauteruccio

Multinomial Naïve Bayes Classifier for Sentiment Analysis of Internet Movie Database

  • Artificial Intelligence
  • Computational Theory and Mathematics
  • Computer Vision and Pattern Recognition
  • Information Systems
  • Computer Science (miscellaneous)
  • Software

Sentiment analysis (SA), also known as opinion mining, is a natural language processing (NLP) technique used to determine the sentiment or emotional tone behind a piece of text. It involves analyzing the text to identify whether it expresses a positive, negative, or neutral sentiment. SA can be applied to various types of text data such as social media posts, customer reviews, news articles, and more. This experiment is based on the Internet Movie Database (IMDB) dataset, which comprises movie reviews and the positive or negative labels related to them. Our research experiment’s objective is to identify the model with the best accuracy and the most generality. Text preprocessing is the first and most critical phase in an NLP system since it significantly impacts the overall accuracy of the classification algorithms. The experiment implements unsupervised sentiment classification algorithms including Valence Aware Dictionary and sentiment Reasoner (VADER) and TextBlob. We also examine the supervised sentiment classifications methods such as Naïve Bayes (Bernoulli NB and Multinomial NB). The Term Frequency-Inverse Document Frequency (TFIDF) model is used to feature selection and extractions. The combination of Multinomial NB and TFIDF achieves the highest accuracy, 87.63%, for both classification reports based on our experiment result.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive