Bingxiao Ding, Xuan Li, Shih-Chi Chen, Yangmin Li

Modular quasi-zero-stiffness isolator based on compliant constant-force mechanisms for low-frequency vibration isolation

  • Mechanical Engineering
  • Mechanics of Materials
  • Aerospace Engineering
  • Automotive Engineering
  • General Materials Science

To effectively isolate low-frequency vibrations, we present a rigid–flexible coupling quasi-zero-stiffness (QZS) vibration isolator with high-static-low-dynamic stiffness (HSLDS) characteristics. Specifically, the QZS isolator is realized by the development of a compliant constant-force mechanism, formed by parallelly combining a diamond-shape mechanism and a nonlinear bi-stable beam in parallel. To evaluate performance of the QZS isolator, we derived an analytical force–displacement model and dynamic model based on pseudo-rigid body method and Lagrange’s equations. Then, finite element analysis was performed in Workbench to verify theoretical analysis and identify the optimal design parameters. Furthermore, the dynamic responses of the QZS isolator are established with the harmonic balance method. Finally, the relationships among displacement transmissibility and factors including damping, BSB, payload mass, and material property are discussed. The results have shown that our QZS isolator design can effectively isolate vibrations in low frequency.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive