DOI: 10.3390/math12162523 ISSN: 2227-7390

Modifications to the Jarque–Bera Test

Vladimir Glinskiy, Yulia Ismayilova, Sergey Khrushchev, Artem Logachov, Olga Logachova, Lyudmila Serga, Anatoly Yambartsev, Kirill Zaykov

The Jarque–Bera test is commonly used in statistics and econometrics to test the hypothesis that sample elements adhere to a normal distribution with an unknown mean and variance. This paper proposes several modifications to this test, allowing for testing hypotheses that the considered sample comes from: a normal distribution with a known mean (variance unknown); a normal distribution with a known variance (mean unknown); a normal distribution with a known mean and variance. For given significance levels, α=0.05 and α=0.01, we compare the power of our normality test with the most well-known and popular tests using the Monte Carlo method: Kolmogorov–Smirnov (KS), Anderson–Darling (AD), Cramér–von Mises (CVM), Lilliefors (LF), and Shapiro–Wilk (SW) tests. Under the specific distributions, 1000 datasets were generated with the sample sizes n=25,50,75,100,150,200,250,500, and 1000. The simulation study showed that the suggested tests often have the best power properties. Our study also has a methodological nature, providing detailed proofs accessible to undergraduate students in statistics and probability, unlike the works of Jarque and Bera.

More from our Archive