DOI: 10.3390/agriculture15131355 ISSN: 2077-0472

Methods for Constructing Soil Dynamic Models Under Intelligent Cultivation: Dynamic Interaction Mechanisms Between Farming Tools with Complex Structures and Soil

Wei Song, Lili Ren, Jingli Wang, Yunhai Ma, Yingjie Guo, Minglei Han, Huaixiang Zhao

A new method for finite element simulation analysis of the interaction between complex structured tillage implements and soil was established in this study. This method accurately analyzes soil fragmentation during subsoiling using tillage tools with complex structures. It also accurately reflects the force on bionic subsoilers during cultivation, the interaction law between the subsoiler and the soil, and the impact of subsoiling operations on the soil properties. Bionic subsoilers were introduced to establish a dynamic analysis model for subsoiling cultivation. The novelty lies in introducing bionic subsoilers inspired by mole claws to reduce draft force and optimize soil failure patterns. Experiments have shown that compared with standard subsoilers, the stress distribution of the bionic subsoiler-H is significantly reduced, with a maximum stress reduction of 52.96%. The stress distribution of the subsoilers after subsoiling cultivation was directly proportional to the wear of the subsoiler, and the draft force of the subsoiler was inversely proportional to the size of the soil block at the front of the subsoiler. Compared with the soil model with a plough layer, the average stress values of the standard subsoiler, bionic subsoiler-H, and bionic subsoiler-C in the models without a plough pan layer were reduced by 13.97%, 6.67%, and 7.1% lower, respectively. Abaqus finite element analysis could not only effectively reflect the actual situation of soil in the field, but also accurately simulate and analyze the effect of soil fragmentation in the subsoiling process via tillage tools with complex structures, providing a digital analysis foundation for the collection of intelligent tillage information.

More from our Archive