DOI: 10.3390/electronics14010005 ISSN: 2079-9292

Leveraging Transformer-Based OCR Model with Generative Data Augmentation for Engineering Document Recognition

Wael Khallouli, Mohammad Shahab Uddin, Andres Sousa-Poza, Jiang Li, Samuel Kovacic

The long-standing practice of document-based engineering has resulted in the accumulation of a large number of engineering documents across various industries. Engineering documents, such as 2D drawings, continue to play a significant role in exchanging information and sharing knowledge across multiple engineering processes. However, these documents are often stored in non-digitized formats, such as paper and portable document format (PDF) files, making automation difficult. As digital engineering transforms processes in many industries, digitizing engineering documents presents a crucial challenge that requires advanced methods. This research addresses the problem of automatically extracting textual content from non-digitized legacy engineering documents. We introduced an optical character recognition (OCR) system for text detection and recognition that leverages transformer-based generative deep learning models and transfer learning approaches to enhance text recognition accuracy in engineering documents. The proposed system was evaluated on a dataset collected from ships’ engineering drawings provided by a U.S. agency. Experimental results demonstrated that the proposed transformer-based OCR model significantly outperformed pretrained off-the-shelf OCR models.

More from our Archive