Intelligent Mobile-Assisted Language Learning: A Deep Learning Approach for Pronunciation Analysis and Personalized Feedback
Fengqin Liu, Korawit Orkphol, Natthapon Pannurat, Thanat Sooknuan, Thanin Muangpool, Sanya Kuankid, Montri PhothisonothaiThis paper introduces an innovative mobile-assisted language-learning (MALL) system that harnesses deep learning technology to analyze pronunciation patterns and deliver real-time, personalized feedback. Drawing inspiration from how the human brain processes speech through neural pathways, our system analyzes multiple speech features using spectrograms, mel-frequency cepstral coefficients (MFCCs), and formant frequencies in a manner that mirrors the auditory cortex’s interpretation of sound. The core of our approach utilizes a convolutional neural network (CNN) to classify pronunciation patterns from user-recorded speech. To enhance the assessment accuracy and provide nuanced feedback, we integrated a fuzzy inference system (FIS) that helps learners identify and correct specific pronunciation errors. The experimental results demonstrate that our multi-feature model achieved 82.41% to 90.52% accuracies in accent classification across diverse linguistic contexts. The user testing revealed statistically significant improvements in pronunciation skills, where learners showed a 5–20% enhancement in accuracy after using the system. The proposed MALL system offers a portable, accessible solution for language learners while establishing a foundation for future research in multilingual functionality and mobile platform optimization. By combining advanced speech analysis with intuitive feedback mechanisms, this system addresses a critical challenge in language acquisition and promotes more effective self-directed learning.