Inferring Body Measurements from 2D Images: A Comprehensive Review
Hezha Mohammedkhan, Hein Fleuren, Çíçek Güven, Eric PostmaThe prediction of anthropometric measurements from 2D body images, particularly for children, remains an under-explored area despite its potential applications in healthcare, fashion, and fitness. While pose estimation and body shape classification have garnered extensive attention, estimating body measurements and body mass index (BMI) from images presents unique challenges and opportunities. This paper provides a comprehensive review of the current methodologies, focusing on deep-learning approaches, both standalone and in combination with traditional machine-learning techniques, for inferring body measurements from facial and full-body images. We discuss the strengths and limitations of commonly used datasets, proposing the need for more inclusive and diverse collections to improve model performance. Our findings indicate that deep-learning models, especially when combined with traditional machine-learning techniques, offer the most accurate predictions. We further highlight the promise of vision transformers in advancing the field while stressing the importance of addressing model explainability. Finally, we evaluate the current state of the field, comparing recent results and focusing on the deviations from ground truth, ultimately providing recommendations for future research directions.