DOI: 10.3390/en18154195 ISSN: 1996-1073

Impact of PM2.5 Pollution on Solar Photovoltaic Power Generation in Hebei Province, China

Ankun Hu, Zexia Duan, Yichi Zhang, Zifan Huang, Tianbo Ji, Xuanhua Yin

Atmospheric aerosols significantly impact solar photovoltaic (PV) energy generation through their effects on surface solar radiation. This study quantifies the impact of PM2.5 pollution on PV power output using observational data from 10 stations across Hebei Province, China (2018–2019). Our analysis reveals that elevated PM2.5 concentrations substantially attenuate solar irradiance, resulting in PV power losses reaching up to a 48.2% reduction in PV power output during severe pollution episodes. To capture these complex aerosol–radiation–PV interactions, we developed and compared the following six machine learning models: Support Vector Regression, Random Forest, Decision Tree, K-Nearest Neighbors, AdaBoost, and Backpropagation Neural Network. The inclusion of PM2.5 as a predictor variable systematically enhanced model performance across all algorithms. To further optimize prediction accuracy, we implemented a stacking ensemble framework that integrates multiple base learners through meta-learning. The optimal stacking configuration achieved superior performance (MAE = 0.479 MW, indicating an average prediction error of 479 kilowatts; R2 = 0.967, reflecting that 96.7% of the variance in power output is explained by the model), demonstrating robust predictive capability under diverse atmospheric conditions. These findings underscore the importance of aerosol–radiation interactions in PV forecasting and provide crucial insights for grid management in pollution-affected regions.

More from our Archive