Hybrid symmetry class topological insulators
Sanjib Kumar Das, Bitan RoyTraditional topological materials belong to different Altland-Zirnbauer symmetry classes (AZSCs) depending on their non-spatial symmetries. Here we introduce the notion of hybrid symmetry class topological insulators (HSCTIs): A fusion of two different AZSC topological insulators (TIs) such that they occupy orthogonal Cartesian hyperplanes and their universal massive Dirac Hamiltonian mutually anticommute, a mathematical procedure we name hybridization. The boundaries of HSCTIs can also harbor TIs, typically affiliated with an AZSC that is different from the ones for the parent two TIs. As such, a fusion or hybridization between planar class AII quantum spin Hall and vertical class BDI Su-Schrieffer-Heeger insulators gives birth to a three-dimensional class A HSCTI, accommodating quantum anomalous Hall insulators (class A) of opposite Chern numbers and quantized Hall conductivity of opposite signs on the top and bottom surfaces. Such a response is shown to be stable against weak disorder. We extend this construction to encompass crystalline HSCTI and topological superconductors (featuring half-quantized thermal Hall conductivity of opposite sings on the top and bottom surfaces), and beyond three spatial dimensions. Non-trivial responses of three-dimensional HSCTIs to crystal defects (namely edge dislocations) in terms of mid-gap bound states at zero energy around its core only on the top and bottom surfaces are presented. Possible (meta)material platforms to harness and engineer HSCTIs are discussed.