Highly piezoelectric, biodegradable, and flexible amino acid nanofibers for medical applications
Meysam T. Chorsi, Thinh T. Le, Feng Lin, Tra Vinikoor, Ritopa Das, James F. Stevens, Caitlyn Mundrane, Jinyoung Park, Khanh T. M. Tran, Yang Liu, Jacob Pfund, Rachel Thompson, Wu He, Menka Jain, M. Daniela Morales-Acosta, Osama R. Bilal, Kazem Kazerounian, Horea Ilies, Thanh D. Nguyen- Multidisciplinary
Amino acid crystals are an attractive piezoelectric material as they have an ultrahigh piezoelectric coefficient and have an appealing safety profile for medical implant applications. Unfortunately, solvent-cast films made from glycine crystals are brittle, quickly dissolve in body fluid, and lack crystal orientation control, reducing the overall piezoelectric effect. Here, we present a material processing strategy to create biodegradable, flexible, and piezoelectric nanofibers of glycine crystals embedded inside polycaprolactone (PCL). The glycine-PCL nanofiber film exhibits stable piezoelectric performance with a high ultrasound output of 334 kPa [under 0.15 voltage root-mean-square (Vrms)], which outperforms the state-of-the-art biodegradable transducers. We use this material to fabricate a biodegradable ultrasound transducer for facilitating the delivery of chemotherapeutic drug to the brain. The device remarkably enhances the animal survival time (twofold) in mice-bearing orthotopic glioblastoma models. The piezoelectric glycine-PCL presented here could offer an excellent platform not only for glioblastoma therapy but also for developing medical implantation fields.