DOI: 10.3390/geosciences15020071 ISSN: 2076-3263

Geochronology, Petrogenesis, and Geological Significance of the Longchahe Granite, Gejiu Sn Polymetallic Ore District, SW China

Rong Yang, Yongqing Chen, Ian M. Coulson

Longchahe porphyritic granite is the largest pluton within the western Gejiu complex, a series of mainly intermediate to felsic alkali intrusions in southwestern China. Our research indicates that the pluton intruded during the Late Cretaceous (82–84 Ma). The pluton is primarily a medium- to coarse-grained porphyritic granite, which shows weakly peraluminous (A/CNK = 0.92–1.82, with an average of 1.09) and alkali (shoshonitic) characteristics, exhibiting an affinity with highly differentiated I-type granite. The porphyritic granite is enriched in K and Rb, but depleted in Ba, P, and Ti, and displays significant enrichment of light rare earth elements with minor negative Eu anomalies (Eu/Eu* = 0.46–0.66). It has elevated (87Sr/86Sr)i ratios (0.71243–0.71301), negative εNd(t) values (−8.42–−6.46), and a broad range of εHf(t) values (−13.80–9.17). These geochemical characteristics indicate that the formation of Longchahe granite involved both crust–mantle assimilation and strong crystal fractionation. Additionally, the pluton demonstrates a significant enrichment of W. A factor analysis study suggests that the formation of granites is associated with F1 (Nb–Ta–Th–LREE–HREE–[W]), whilst F2 represents Sn–Pb–U–[Zn] polymetallic mineralisation in western Gejiu. Further, a score diagram indicates that the granites exhibit a high abundance of ore-forming elements, with potential for Pb and Zn mineralisation. Our study favours that the Longchahe granites likely formed within a continental arc–tectonic setting, related to subduction and subsequent rotation processes experienced by the Paleo-Pacific plate.

More from our Archive