Fractional Vortex Dynamics in Two-Band Superconductors with Linear Normal Strips
Ariday S. Mosquera-Polo, Edwan A. Aríza-Echeverri, Cristhian Aguirre, Luis F. Muñoz-Martínez, Julián FaúndezWe investigate the impact of normal linear strips—both perpendicular and parallel to the direction of vortex motion—on the dynamics of fractional vortices in a two-band superconducting slab. In the absence of pinning, composite vortices dominate throughout the sample, while non-composite (dissociated) vortices appear only near the vortex entry edge, with energy dissipation primarily governed by the motion of composite structures. To modulate vortex behavior, we introduce linear regions of locally suppressed superconductivity, oriented either perpendicular or parallel to the vortex trajectory. A single perpendicular strip confines fractional vortices to the injection region, whereas two perpendicular strips stabilize composite vortices in the central domain and induce fractional vortex states near the boundaries. In contrast, parallel strips promote the dissociation of vortices across the entire sample, significantly altering the spatial configuration and dynamics of the vortex matter. Furthermore, the interband correlation coefficient serves as a direct indicator of the degree of spatial overlap between vortices in the two condensates. These findings highlight the critical role of pinning geometry in shaping vortex dynamics and energy dissipation, offering new strategies for controlling flux behavior in multiband superconductors for technological applications.