DOI: 10.3390/jintelligence12030032 ISSN: 2079-3200

Explanatory Cognitive Diagnosis Models Incorporating Item Features

Manqian Liao, Hong Jiao, Qiwei He
  • Cognitive Neuroscience
  • Developmental and Educational Psychology
  • Education
  • Experimental and Cognitive Psychology

Item quality is crucial to psychometric analyses for cognitive diagnosis. In cognitive diagnosis models (CDMs), item quality is often quantified in terms of item parameters (e.g., guessing and slipping parameters). Calibrating the item parameters with only item response data, as a common practice, could result in challenges in identifying the cause of low-quality items (e.g., the correct answer is easy to be guessed) or devising an effective plan to improve the item quality. To resolve these challenges, we propose the item explanatory CDMs where the CDM item parameters are explained with item features such that item features can serve as an additional source of information for item parameters. The utility of the proposed models is demonstrated with the Trends in International Mathematics and Science Study (TIMSS)-released items and response data: around 20 item linguistic features were extracted from the item stem with natural language processing techniques, and the item feature engineering process is elaborated in the paper. The proposed models are used to examine the relationships between the guessing/slipping item parameters of the higher-order DINA model and eight of the item features. The findings from a follow-up simulation study are presented, which corroborate the validity of the inferences drawn from the empirical data analysis. Finally, future research directions are discussed.

More from our Archive