DOI: 10.3390/coatings15040399 ISSN: 2079-6412

Experimental Study on Fatigue Performance of CRTS III Ballastless Track-Girder System Considering Transverse Wheel–Rail Force

Peng Liu, Yong Liu, Jingxiang Huang, Jiuwen Bao, Jun Liu, Xiang Cheng

The CRTS III (China Railway Track System Type III)-girder is susceptible to fatigue damage under high-frequency train loads. However, existing research lacks sufficient focus on the CRTS III-girder and the transverse wheel–rail forces encountered during train operation. To better replicate the stress conditions experienced by high-speed railway track systems, a 1:4 scale CRTS III-girder was fabricated following the principle of mid-span concrete stress equivalence. Subsequently, 9 million transverse and vertical fatigue load cycles were applied to the specimen, leading to the following conclusions: First, no visible cracks appeared on the CRTS III-girder surface during the experiment, indicating strong fatigue resistance under train loads. Second, the box girder primarily exhibited a linear elastic response with minimal stiffness variation. Meanwhile, the upper ballastless track structure experienced a highly complex stress state, with significant variations observed across different layers under cyclic fatigue loading. Third, under fatigue loading, the longitudinal strain of the mid-span track slab and the self-compacting concrete (SCC) layer exhibited an overall decreasing trend, with reduction rates of −66% and −57.9%, respectively. Conversely, the longitudinal strain of the base plate and the top and bottom of the box girder gradually increased, with respective increases of 38.6%, 10.4%, and 12.2%. Finally, the connection between the base plate and the box girder remained robust, showing no relative slippage in the transverse, longitudinal, or vertical directions. The sliding layer exhibited stable performance in the longitudinal direction, with no significant degradation observed under cyclic fatigue loading. However, with increasing load cycles, the transverse relative displacement of the sliding layer gradually increased, reaching a maximum of 0.1 mm. This displacement, in turn, contributed to transverse rail movement, potentially affecting driving safety.

More from our Archive