DOI: 10.3390/app14104103 ISSN: 2076-3417

Experimental Evaluation of a Takagi–Sugeno Fuzzy Controller for an EV3 Ballbot System

Rodolfo Enemegio, Francisco Jurado, Jonathan Villanueva-Tavira

In this paper, experimental results about the performance of a Takagi–Sugeno Fuzzy Controller (TSFC) for an EV3 Ballbot Robotic System (EV3BRS) are reported. The physical configuration of the EV3BRS has the form of an inverted pendulum mounted on a ball. The EV3BRS is an underactuated robotic system with four outputs and two control torques. In this work, following the Takagi–Sugeno (TS) fuzzy control design methodology, the Parallel Distributed Compensation (PDC) approach is used in the design of the TSFC. The EV3BRS’s TS Fuzzy Model (TSFM) design comes from linearization of the nonlinear model around two operation points near the upright position of EV3BRS’s body. The Linear Matrix Inequality (LMI) approach was used to obtain the feedback gains for every local linear controller, guaranteeing, via a conservative stability condition, the global asymptotic stability of the overall fuzzy control system. The main goal of the control task consists of maintaining the EV3BRS’s body at its upright position. Measurement and control data from and to the EV3BRS are transferred via telecontrol and telemetry. The appropriate performance of the controller design is corroborated via experimentation.

More from our Archive