Enhancing Starch Film Properties Using Bacterial Nanocellulose-Stabilized Pickering Emulsions
Natália Tavares de Almeida, André Luís Sousa Pereira, Matheus de Oliveira Barros, Adriano Lincoln Albuquerque Mattos, Morsyleide de Freitas RosaThis study aimed to address issues related to hydrophilicity, barrier properties, and mechanical performance in starch-based films by incorporating Pickering emulsions stabilized with nano-fibrillated bacterial cellulose (BC). Emulsions were added to the film-forming suspension at varying concentrations (1.0%, 2.5%, 5.0%, and 7.5% v/v) for comparison. The films were evaluated using water vapor permeability (WVP), contact angle, Fourier Transform Infrared Spectroscopy (FTIR), and tensile tests. The results showed a significant reduction in film hydrophilicity, with the contact angle increasing from 49.7° ± 1.5 to 71.0° ± 1.4, and improved water vapor barrier properties, with WVP decreasing from 0.085 ± 0.04 to 0.016 ± 0.01 g·mm/h·m2·kPa. FTIR analysis confirmed the successful incorporation of the emulsion into the starch matrix. Among the tested concentrations, 2.5% provided an optimal balance, increasing hydrophobicity while maintaining mechanical strength. These findings demonstrate that Pickering emulsions are an effective strategy for enhancing the functional properties of starch films.