DOI: 10.3390/computation13070158 ISSN: 2079-3197

Enhancing DDoS Attacks Mitigation Using Machine Learning and Blockchain-Based Mobile Edge Computing in IoT

Mahmoud Chaira, Abdelkader Belhenniche, Roman Chertovskih

The widespread adoption of Internet of Things (IoT) devices has been accompanied by a remarkable rise in both the frequency and intensity of Distributed Denial of Service (DDoS) attacks, which aim to overwhelm and disrupt the availability of networked systems and connected infrastructures. In this paper, we present a novel approach to DDoS attack detection and mitigation that integrates state-of-the-art machine learning techniques with Blockchain-based Mobile Edge Computing (MEC) in IoT environments. Our solution leverages the decentralized and tamper-resistant nature of Blockchain technology to enable secure and efficient data collection and processing at the network edge. We evaluate multiple machine learning models, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Transformer architectures, and LightGBM, using the CICDDoS2019 dataset. Our results demonstrate that Transformer models achieve a superior detection accuracy of 99.78%, while RF follows closely with 99.62%, and LightGBM offers optimal efficiency for real-time detection. This integrated approach significantly enhances detection accuracy and mitigation effectiveness compared to existing methods, providing a robust and adaptive mechanism for identifying and mitigating malicious traffic patterns in IoT environments.

More from our Archive